Estimating the Impact of Climate Change on Electricity Load for California's Utilities

Maximilian Auffhammer¹ and Katharine Hayhoe²

¹ARE/IAS, UC Berkeley auffhammer@berkeley.edu ²Department of Geosciences, Texas Tech katharine.hayhoe@ttu.edu

PRELIMINARY AND NOT FOR ATTRIBUTION

September 12^{th} , 2007

Temperature and Electricity Demand (CalISO)

Utility Specific Share of Residential Sales (2001)

Anaheim Public Utilities Dept.

Burbank Public Service Dept.

Glendale Public Service Dept.

Imperial Irrigation District

LAWP

Modesto Irrigation District

Pacific Gas & Electric Co.

Pasadena Water & Power Dept.

Riverside Utilities Dept.

SACMUD

San Diego Gas & Electric Co.

Silicon Valley Power

Southern California Edison Co.

Turlock Irrigation District

Vernon Light & Power Dept.

Sectoral Peak Demand by Use (2005)

Utility Size by Retail (2001)

Map of Utilities with Retail Sales (2007)

Research Question

- What is the utility specific projected impact of Climate Change on
 - Total Electricity Consumption (Demand)
 - Frequency of "near peak days"
 - 3 Peak Demand

Literature

- Baxter and Calandri (1992)
- Crowley and Jones (2003)
- Mendelsohn (2006)
- Mansur, Mendelsohn and Morrison (2005)
- Franco and Sanstad (2006)
- Miller, Hayhoe, Jin and Auffhammer (2006)
- Deschenes and Greenstone (2007)

Data

Electricity Data:

- Hourly Load
- FERC form 714
- Utilities with annual peak demand greater than 200 megawatts results in 15 usable utilities.

Weather Data:

- NCDC Hourly Temperature
- NCDC Hourly Rainfall
- Averaged across stations in utility service area

Specification

$$Load_{t} = f(Temp_{t}) + g(Precip_{t}) + \sum_{i=1}^{56} \omega_{i} + \sum_{j=1}^{5} \delta_{j} + \sum_{s=1}^{24} \zeta_{s} + \sum_{y=1}^{12} \psi_{y} + \eta_{t}$$

 $Load_t$ Hourly Load in MW

 $Temp_t$ Mean Hourly Temperature in Degree Fahrenheit

 $Precip_t$ Mean Daily Rainfall in mmWeek of the year fixed effects δ_j Day of the week fixed effect

 ζ_s Hour of the day fixed effects

 ψ_y Year fixed effects

 η_t Nicely behaved error term

Estimation Results (1/4)

Estimation Results (2/4)

Estimation Results (3/4)

Estimation Results (4/4)

Climate Model for Simulation

- National Center for Atmospheric Research (NCAR) Parallel Climate Model (PCM)
- Provides predictions at for 3-hour intervals
- Force model by SRES A1f1 Scenario
- Low sensitivity model
- Hadley 3 Predicts annual average increase of 5.8 Degree Celsius.
- NCAR PCM predicts annual average increase of 3.8 Degree Celsius

Distribution of July Temperatures 4-7pm (SVP)

Distribution of July Temperatures 4-7pm (SDGE)

Distribution of July Temperatures 4-7pm (IID)

Distribution of January Temperatures 4-7pm (SVP)

Distribution of January Temperatures 4-7pm (SDGE)

Distribution of January Temperatures 4-7pm (IID)

Simulated Increases in Annual Consumption (A1f1)

Utility	2020-40	2041-60	2061-80	2081-2100
Vernon Light & Power Dept.	1.08%	1.22%	1.35%	1.79%
Silicon Valley Power	2.15%	2.36%	2.57%	3.37%
Sacramento Municipal Utility District	2.04%	2.50%	2.79%	4.11%
Glendale Public Service Dept.	2.36%	2.95%	3.28%	4.58%
Pacific Gas & Electric Co.	2.54%	3.03%	3.31%	4.62%
Turlock Irrigation District	2.76%	3.19%	3.49%	4.88%
Modesto Irrigation District	2.78%	3.25%	3.60%	5.12%
Riverside Utilities Dept.	2.53%	3.23%	3.60%	5.14%
Pasadena Water & Power Dept.	2.97%	3.55%	3.90%	5.26%
San Diego Gas & Electric Co.	3.42%	3.93%	4.26%	5.54%
Southern California Edison Co.	2.91%	3.68%	4.03%	5.71%
Burbank Public Service Dept.	3.21%	3.87%	4.28%	5.80%
Los Angeles Dept. of Water & Power	3.77%	4.34%	4.69%	6.14%
Anaheim Public Utilities Dept.	3.83%	4.41%	4.77%	6.26%
Imperial Irrigation District	4.52%	5.56%	6.22%	8.81%

Increase in Extreme Heat Events (3-hour)

Utility	Percentile	1990-	2020-	2040-	2060	2080-	% Δ	Δ
	Events	2000	2039	2059	2079	2099		
SacMUD	99.9	2	2.6	7.6	6.2	15.7	783%	13.7
	99	21	44.2	57.6	63.1	89.6	430%	68.7
LADWP	99.9	2	2.7	7.4	7.6	17.2	860%	15.2
	99	21	31.6	43.6	47.8	68.9	331%	48.1
SoCal Edison	99.9	2	3.9	10.2	10.3	24.0	1200%	22.0
	99	21	40.0	56.7	59.7	89.0	428%	68.2
SDG&E	99.9	2	5.4	9.3	9.1	20.3	1015%	18.3
	99	21	42.3	52.1	58.3	79.4	381%	58.5
IID	99.9	2	6.6	13.5	14.8	29.3	1463%	27.3
	99	21	43.8	57.1	61.1	90.5	434%	69.6
PG&E	99.9	2	7.2	16.3	16.2	36.4	1818%	34.4
	99	21	48.9	63.0	67.0	98.4	473%	77.6

Climate Change Impacts on Peak Demand

Utility	2020-40	2041-60	2061-80	2081-2100
Silicon Valley Power	-0.2%	-0.3%	0.9%	0.1%
Vernon Light & Power Dept.	0.9%	0.9%	1.0%	1.0%
Modesto Irrigation District	0.9%	1.6%	2.7%	3.9%
Sacramento Municipal Utility District	1.4%	2.3%	3.6%	3.9%
Turlock Irrigation District	2.0%	2.6%	3.5%	4.6%
Los Angeles Dept. of Water & Power	5.9%	5.9%	6.5%	6.7%
Anaheim Public Utilities Dept.	7.3%	7.3%	8.1%	8.3%
Pasadena Water & Power Dept.	7.6%	7.4%	9.0%	9.5%
Burbank Public Service Dept.	7.7%	7.4%	9.6%	10.2%
San Diego Gas & Electric Co.	8.2%	8.5%	9.4%	10.4%
Imperial Irrigation District	7.1%	8.1%	8.6%	10.5%
Pacific Gas & Electric Co.	7.5%	8.6%	9.5%	11.6%
Glendale Public Service Dept.	12.1%	11.8%	14.1%	14.8%
Riverside Utilities Dept.	15.0%	17.0%	17.8%	18.5%
Southern California Edison Co.	14.0%	15.4%	16.7%	19.3%

Conclusions

- Climate Change will affect California's utilities differentially.
- Further inland, more southern utilities with larger shares of residential customers will experience larger increases in demand.
- Peak demand is predicted to increase between 0.1% and 19.3%
- Number of extreme heat days is expected to increase drastically.